Comparative genomic analysis of Geobacter sulfurreducens KN400, a strain with enhanced capacity for extracellular electron transfer and electricity production
نویسندگان
چکیده
منابع مشابه
Extracellular Palladium Nanoparticle Production using Geobacter sulfurreducens
Sustainable methods are needed to recycle precious metals and synthesize catalytic nanoparticles. Palladium nanoparticles can be produced via microbial reduction of soluble Pd(II) to Pd(0), but in previous tests using dissimilatory metal reducing bacteria (DMRB), the nanoparticles were closely associated with the cells, occupying potential reductive sites and eliminating the potential for cell ...
متن کاملThe hydrogenases of Geobacter sulfurreducens: a comparative genomic perspective.
The hydrogenase content of the genome of Geobacter sulfurreducens, a member of the family Geobacteraceae within the delta-subdivision of the Proteobacteria, was examined and found to be distinct from that of Desulfovibrio species, another family of delta-Proteobacteria on which extensive research concerning hydrogen metabolism has been conducted. Four [NiFe]-hydrogenases are encoded in the G. s...
متن کاملA trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA
The multi-heme, outer membrane c-type cytochrome (c-Cyt) OmcB of Geobacter sulfurreducens was previously proposed to mediate electron transfer across the outer membrane. However, the underlying mechanism has remained uncharacterized. In G. sulfurreducens, the omcB gene is part of two tandem four-gene clusters, each is predicted to encode a transcriptional factor (OrfR/OrfS), a porin-like outer ...
متن کاملElectricity production by Geobacter sulfurreducens attached to electrodes.
Previous studies have suggested that members of the Geobacteraceae can use electrodes as electron acceptors for anaerobic respiration. In order to better understand this electron transfer process for energy production, Geobacter sulfurreducens was inoculated into chambers in which a graphite electrode served as the sole electron acceptor and acetate or hydrogen was the electron donor. The elect...
متن کاملGenetic Identification of a PilT Motor in Geobacter sulfurreducens Reveals a Role for Pilus Retraction in Extracellular Electron Transfer
The metal-reducing bacterium Geobacter sulfurreducens requires the expression of conductive pili to reduce iron oxides and to wire electroactive biofilms, but the role of pilus retraction in these functions has remained elusive. Here we show that of the four PilT proteins encoded in the genome of G. sulfurreducens, PilT3 powered pilus retraction in planktonic cells of a PilT-deficient strain of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Genomics
سال: 2012
ISSN: 1471-2164
DOI: 10.1186/1471-2164-13-471